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Abstract— One of hard mathematical problems to find a solution, it is the Hamiltonian path or the salesman problem, because when 
number of nodes (cities) is increasing, any system needs more time to resolve, being considered this mathematical challenge as non-
polynomial complete problem (NP-complete or NP-Hard). On the other hand, lot problems can reduce to graph form, being very easy to 
use any Hamiltonian graph to solve them, by this reason, it is an open problem to find some technology can resolve any Hamiltonian path 
in approximately polynomial time (P≈NP). In this article, we can show one system, which uses Inchrosil as storage unit of nucleotides, to 
solve any Hamiltonian path in approximately polynomial time, by this reason, we have based in our research in all knowledge about DNA 
computing and mathematical equations using DNA (in particular their four characters and their association rules) to create a system can 
solve any Hamiltonian Graph, using Inchrosil circuits. 
. 

Index Terms— Hamiltonian path, graph, DNA Computing, DNA, Inchrosil, Computational Complexity, Euclidian Problem.   

——————————      —————————— 

1 INTRODUCTION                                                                     
ny mathematical and computer problem could be classi-
fied according their inherent difficulty and its time neces-
sary to solve the entire problem (Computational Time), 

this science area is called Computational Complexity Theory [1]. 
One computational problem could be viewed as a collection of 
instructions or equation, which is solved individually to find the 
entire solution of the problem; other people define one compu-
tational problem as some problem could be solved in a comput-
er, both definitions are complementary to define a computa-
tional problem [2]. Normally, computational and mathematical 
problem can divide in next groups: 
 

• P Complexity: This group contains all problems can be 
solved in a deterministic machine and one polynomial 
time. 

• NP Complexity: This group contains all problems can 
be solved in a non-deterministic machine and one pol-
ynomial time. 

• NP Complete Complexity: This group contains all 
problems can be solved in a non-deterministic machine 
and not polynomial time. 

 
On the other hand, there is other science area focused in resolv-
ing combinatorial problem by means of graph theory [3] [4], 
because any combinatorial problem could be converted to 
graph. In general, one graph can be defined as set of objects, 
where each object is connected with another object by links. 
Those connections are called edges and they can have direction 
or not inside of the path, making up directed or undirected 
graphs. On the other hand, each object is called vertex, as we 
said before, each vertex can join with other vertex by one or 
several edges with different vertex, inclusive itself. The graphs 
can have several classifications depending of different charac-
teristics (weight edges, number of connections, direction, etc).  
 
 

One pioneer inside of graph theory and topology was Leonard 
Euler, who in 1736 shows “the Seven Bridges of Königsberg prob-
lem” [5], highlight, in that period, Königsberg was Prussian city 
(now Kaliningrad, Russia) with seven bridges, over the Pregel 
River. The Euler’s problem formulates as one pedestrian is pos-
sible to walk through the city that would cross each bridge once 
and only once. This problem is an excellent combinatorial prob-
lem to convert in a graph form, because each part of the city is 
possible to represent as element of graph. Later, the Irish math-
ematician, William Rowan Hamilton and the British mathema-
tician, Thomas Kirkman [6] formulated mathematically in 
1800’s the Travelling Salesman Problem (next lines, we can 
called as TSP), in same time, it was formulated Hamiltonian 
Path Problem (following HPP), one of the most mathematical 
complex problems in graph theory, impossible to do in deter-
ministic algorithm with huge number of elements.  
 
In XX century, Edsger Wybe Dijkstra published one algorithm 
[7], which is a graph search algorithm that solves the single-
source shortest path problem for a graph with non-negative 
edge path costs, making a shortest path tree, mainly this algo-
rithm is often used in routing task or part of other graph algo-
rithms. Later, Robert W. Floyd and Wharshall [8] [9] modified 
Dijkstra’s algorithm, which compares all possible paths through 
the graph between each pair of vertices to find shortest paths in 
weighted graph with positive or negative edge weights. Finally, 
From Dijkstra to now, there are lot algorithms or modifications 
of these algorithms to calculate shortest path or any route. 
 
On the other hand, today the current computing systems are 
based on a sequential technology established by John Von 
Neumann [10] [11] in the middle of the last century. These se-
quential computers are good at resolving mathematical prob-
lems, because they have a powerful arithmetic unit inside, 
which can do complex operations with binary arithmetic.  
 

A  
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Also, these computers have difficulties with so-called turnkey 
problems, where all possible solutions should check to find a 
final solution, by this reason; these systems lost a huge time in 
the preparation all possible solution and later check one per 
one, being their computational time close to exponential or log-
arithmic order. One perfect example is HPP, which with a few 
nodes or cities, any system can solve it, but when the number or 
cities or nodes is huge, this problem cannot solve in polynomial 
time or similar, by this reason, there is not deterministic algo-
rithm to solve the problem.  
 
At the moment, scientific community can solve these problems 
with the construction of parallel computers or supercomputers, 
which divide and share each part of the problem between all 
different nodes of the system. This methodology can reduce the 
computing time close to polynomial, but finally, these solutions 
consume many resources in communications between a lot in-
terconnected nodes, which are normally sequential computers. 
There are other initiatives to solve combinatorial problems, for 
example, using organic materials, we can find bacterial comput-
er to solve HPP [12], on the other hand, using DNA to resolve 
HPP by Prof. Adleman [13], the 3-SAT problem using DNA 
[14], implementations in membrane computing [15] and others 
organic solutions. 
 
In this way, using organic materials (in particular DNA), in 
1994, Professor Adleman formulated a new alternative for pro-
gramming with organic DNA, using huge mathematical 
knowledge about computation with DNA and last advances in 
DNA. He created a DNA computer to solve HPP with seven 
nodes, using organic material. Which this experiment, he 
demonstrated that NP-Complete problems could be resolved in 
a computational time very close to the polynomial, being very 
close to find one solution of universal problem of P≈NP. 
 
With this experiment, Prof Adleman shows the huge potential 
of DNA computing, breaking walls using organic material in 
computer science. Also, DNA Computing has huge potential to 
solve complex problems, but this methodology of computing 
contains certain barriers. For one side, implicit characteristics of 
material used (organic DNA), because is mainly perishable and 
long of time it dies. Other side, DNA machines are difficult to 
integrate in other environments as organics or silicon system, 
mainly in communication between them, by this reason, these 
systems are limited only for scientific environments and theo-
retical formulations.  
 
Finally, in other field as optical, we can find works as solving 
HPP with light-based computer [16], on the other hand, using 
mathematical-theoretical equation for solving HPP [17], also 
with genetic algorithms to solve TSP [18] or by other systems or 
methodologies in different science areas. 
 
This article, we shall show a solution, which uses all mathemat-
ical knowledge of DNA Computing, but without chemistry 
procedures to compute problems, only using artificial and bina-
ry components, being this computation a mixture between 
DNA computing and traditional Silicon Computing. Our solu-
tion could be a complementary to DNA computing and soon 

future to create bridges to join both technologies (artificial and 
organic), using for example, any biosensor or other system to 
convert any organic signal in digital signal and vice verse. 
 
2    RESOLVING HAMILTONIAN PATH PROBLEM 
 
We can define HPP as one graph problem, which has a compu-
tational complexity of NP-Complete. HPP consist mainly in one 
path in a directed or undirected graph that visits each vertex 
(city) exactly once. Each HPP of n vertex has (n!) different se-
quences of vertex might be Hamiltonian paths in an n-vertex 
graph (It is called graph complete). Obvious way could be use 
any brute force algorithms to solve any HPP, but that test all 
possible solutions would be a slow, for example, suggesting, we 
have HPP of 50 vertices, we need factorial of fifty combinations 
of these vertices, which are possible solutions or Hamiltonian 
Path, by this reason, it is necessary to check one per one all 
combinations to find all truth Hamiltonian path, being a hard 
work and sometime impossible to do with sequential comput-
ers. There are several theoretical approaches to simplify this 
calculation as: dividing graph edges [19], other approach is us-
ing dynamic programming (algorithm of Bellman), where this 
algorithm finds all shortest paths [20]. In the same way, we can 
find in Ford’s work [21], Moore [22] and Yen [23] other useful 
approach to solve graph problems. 
 
In 1994, Professor Adleman demonstrated a proof-of-concept, 
using DNA as way to compute any hard problem, in particular 
the HPP of seven cities. Adleman solve a HPP, where there is a 
path from city origin to city destination passing each vertex ex-
actly once.  
 
This algorithm has computational complexity of O (n) bio-
process and one space complexity of n! DNA strands. Also we 
need for 100 nodes graph almost 15 1018 millions of tonnes in 
organic material (DNA), in consequences impossible to manipu-
late and calculate any huge problem with this methodology. 
 
On the other hand, there are parallel and distributed implemen-
tations for the solution of the HPP, using a cluster of computers, 
but normally, they need a huge amount of resources and com-
munications between them, finally we can limitations to solve 
big problems, using these solutions. By this reason, in this arti-
cle, we could show other alternative solution, using electronic 
components and all knowledge of DNA computing (without its 
chemical procedures).  

The advantage that inorganic DNA (Inchrosil [24] [25]) has 
compared with sequential technologies is the great parallelism 
in the embodiment of the operations and it is possible to create 
complex structures to solve combinatorial problems, because 
Inchrosil can represent any DNA structure (simple strand, dou-
ble strands, with holes, etc).  

In particular at HPP, with Inchrosil, we can create same envi-
ronment of Adleman’s experiment, by this reason and based on 
the aforementioned characteristics, Inchrosil can create simple 
strand to codify any vertex and edge of Hamiltonian path and 
can solve in parallel any problem. 
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As we said before, HPP is a NP hard complete problem, being 
very difficult to solve with any deterministic algorithm with 
polynomial order, by this reason, it is better to use non-
deterministic problem to solve any HPP, one example of non-
deterministic algorithm is presented next lines: 

Where Inputs are: Graph, Vin and Vout  

• All paths existing in the graph are generated randomly. 

• All the paths don’t contain the inputs are eliminated. 

• All those paths which do not have the required vertices 
are also eliminated. 

• For each vertex, the paths are rejected which do not in-
clude the actual vertex. 

Where possible outputs are: YES (If paths exist) NO (otherwise) 

Therefore, in a conventional computer system, normal compu-
tational time cannot be polynomial, because it is necessary to 
compare all the cities one by one to find the path from one ini-
tial city (Vin) to one final city (Vout). The electronic system de-
scribed below was approached from the seven (7) vertices and 
eleven (11) edges graph as one initial proof-of-concept, we can 
see in Figure 1, seven node graphs, but it is possible with this 
system a huge system with lot nodes. 

 

 

 

 

 

First step is encoding the graph of Figure 1, using cod-Inchrosil 
code [24], where each city (vertex) had number of nucleotides in 
its codification, i.e. following the Adleman´s experiment, 20 
nucleotides. On the other hand, the edges are composed of the 
same number, 20 nucleotides, which correspond to last nucleo-
tides of origin city and the initial 10 nucleotides of destination 
city (next Figure 2 shows the codification from City I to City J). 

 

 

 

 

 

With above codification, it is possible to create one DNA strand, 
which contains all vertex and edges of graph (Figure 1). With 
this DNA strand would offer the possibility, that in worst case 

to find a solution, it is necessary to compare a complete graph 
(we can define a graph complete as one graph, which contains 
all edges possible, G= (V, VxV), being before V, the set contain 
all vertices of graph), and in the best case, only graph showed in 
Figure 1.  

This possibility offers some final programmer/user to choose 
one specific codification of graph (i.e. number of edges and ver-
tex), always inside of limits at graph. For example, in our case, 
there is a DNA chain of 5040 nucleotides (factorial of seven, 
because there are seven cities in our graph), by this reason, final 
programmer/user could activate only complementary part of 
this DNA chain in specific edges at graph to analyze. In this 
case, when we are looking for Hamiltonian path, only we search 
a complementary part in those specific edges. 

In the same way, Figure 3 shows a codification of graph, which 
has been codified by DNA, where Ei represent vertex (in this 
case, cities) and Aij represent edges (roads between cities). On 
the other hand, graph of Figure 1 would be called ‘G’ and its 
encoding could be seen in Figure 3, where A0…An represents 
edges of graph and E0….En represents cities or nodes of prob-
lem formulated. 

 

 

 

Next step consists to arrange all the possible Hamiltonian paths 
inside of a seven vertices graph complete, by this reason, using 
cod-Inchrosil was created a set of 5040 DNA chains (factorial of 
seven), with strand length of 140 nucleotides (if problem has 
seven cities and each city has codification of 20 nucleotides, fi-
nal strand length is 140 nucleotides). All this set of strand are 
organised by matrix form, because, it was more convenient to 
be able to approach a final three-dimensional chip, and in this 
way to emulate the nature, finally this matrix is called ‘CG’ in 
our experiment. 

On the other hand, in set theory [26] is normally used to delimit 
the scope of a proposal, to compare if some object is part or not 
of one specific set, i.e. one set ‘S’ is defined as “YES”/ ”NO”, if 
and only if for some object α in included or not in ‘S’. In our 
case, we can compare each edge of ‘CG’ matrix with each specif-
ic edge in ‘G’ graph. All this operation can do in parallel way 
and the same time can obtain all edges are included in ‘G’ 
graph. Being each edge of ‘CG’ object need be compared with 
edge set proposal for programmer to determine which of these 
edges are included in ‘G’, remember, ‘CG’ is all possible solu-
tions of the problem. As it is described in [24], Inchrosil is an 
electronic circuit allows storing all information of one pair of 
nucleotides by binary form, you can see Figure 4. This minimal 
unit allows create complex form or set of nucleotides (activating 
or not complementary chain), in our example all chains of ‘G’ 
graph and ‘CG’ matrix. 

 
Figure 1: Complete Graph of HPP 

 

 
Figure 2: Codification Vertex I and J 

 

 
Figure 3: Graph codified by DNA 
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Above, we have described a parallel comparison between ‘CG’ 
matrix and ‘C’ graph to find all possible edges included in ‘C’. 
To be able to perform these comparisons in our experiment is 
necessary to use the philosophy of logical half-adders [27], car-
ry-save adders (CSA) and Wallace trees. Highlight, for our ex-
periment is removed carry option in massive comparison, doing 
direct additions of two inputs. On the other hand, following 
truth table of XOR gate, when two inputs are the same result, 
final result is 0, by this reason, in our experiment we have con-
sidered to invert all outputs, being 1 in all positive case and 0 in 
all negative case. Due to this approach, comparers were devel-
oped with XNOR gates to resolve the problem, by this reason; 
in our experiment, we have joined together 40 XNOR gates, 
where if each edge has 20 nucleotides, being 40 bits per edge 
and 80 bits of inputs, since it will be compared two by two. 
With this system, it is possible to create CSA without carry, 
where joining all XNOR gates would giving a unique result of 
40 bits. 

Finally, the system offered a 40 bits result, which was not opti-
mum to specify one edge is the same or not, because final an-
swer should be ‘yes’ or ‘no’ (i.e. 0 or 1). In this case, we needed a 
system to check all input and to generate only one output, by 
this reason, using only AND gates, we were able to create a sys-
tem, which has 40 inputs and only one output, where system 
gives a ‘1’ as logical result, this result would mean that both 
edge are the same, on the other hand, if logical result is ‘0’, both 
edges are different. In case of positive result, edge is part of ‘G’ 
graph (which is a possible Hamiltonian path). 

This process could be parallel, by this reason, all comparer are 
distributed by one matrix form to compare by parallel way, all 
edge (two to two) in twice systems (‘G’ graph and ‘CG’ matrix). 
Highlight, with this system we can obtain if one edge is con-
tained in ‘G’ graph solution, but with this sub-method do not 
indicate yet, if ‘G’ graph solution is a Hamiltonian Path, by this 
reason, in our experiment, we have used sub-method of Wallace 
trees methodology [28]. In general, they have same philosophy 
of Wallace Trees, but some specific customizations in their 
structure, i.e. we have created one for each sub-result of com-
parison (column of matrix). These systems are composed by OR 
gates, creating with this way, several levels as Wallace trees to 
find all possible coincidences between edges and chains.   

The final objective is to find one chains where all edges have 
coincidences, in this case, we would have a Hamiltonian Path. 
That is possible because all outputs of OR gate system are con-
nected with other system compose for AND gates and only one 
output, which indicates ‘YES’ or ‘NO’ the possible solution is 
Hamiltonian path.  

Finally, we can obtain a vector with n components (being n in 
our case, 5040 chains), where one element of vector has ‘1’ logi-
cal value, this element indicates is Hamiltonian path. In this 
case, we considered tp as time to create all possible solutions, tc 
as time to compare all edges of one component, tf as time to 
compare all sub-results, ta as additional time (delays in gates, 
communications, check final vector, etc.) and finally, n as num-
ber of components, we can formulated final time is T = tp + n tc 
+ tf + ta, being this time close to polynomial order, because be-
fore times are considered in polynomial order.  

On the other hand, due modularity of the system, it is possible 
to create complex structures or system with huge number of 
nodes, because we can create circuit to solve partial solutions 
and later to join all solution to find final solution. 

In Figure 5, we can see all circuit to calculate any Hamiltonian 
path of 7 cities, where the reference Figure 5-18 is ‘CG’ matrix 
with all possible Hamiltonian paths, the reference Figure 5-12 is 
the module, which compares edges between ‘CG’ and ‘C’, refer-
ences Figure 5-15 and Figure 5-16 are logical gates to calculate 
similarity between DNA chains and finally, the reference Figure 
5-20 is a vector with all comparison. 

 

 

 

 

 

 

 

3   RESOLVIND TRAVELLING SALESMAN PROBLEMS 
The travelling salesman problem (TSP) is one of the most fa-
mous and best studied in the computational area, being one the 
most difficult to resolve, due its complexity, which is considered 
a NP-complete problem. In the previous section, we have de-
scribed an electronic system to solve Hamiltonian path problem 
with a cost approximately of polynomial order, in this para-
graph, the graph to analyze has a weighted and direction in its 
paths, where only one or set Hamiltonian paths are solution of 
TSP, so first step would be found all Hamiltonian paths at the 
graph, and next steps would be calculated final cost each Ham-
iltonian path found, using its weighted and directions, by this 
reason, in our research, we have used the same infrastructure 
explained above, which would obtain all Hamiltonian paths, 

 
Figure 4: Inchrosil Unit 

 

 
Figure 5: Hamiltonian Path Circuit 
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later with these paths, the system would calculate each individ-
ual cost and compare all cost to get which is the best Hamiltoni-
an path, always depending an initial characteristics established 
by programmer/user. 

All these calculations could be done in parallel, also all criteria 
to sort path cost could be stored in different modules of the sys-
tem, in this way any operation is quick and faster to do. In this 
article, we have considered two different systems to do all 
mathematical operation and choice the best Hamiltonian path 
cost, depending one specific criteria. The first system contains 
software to calculate and storage all paths cost, which determi-
nates the correspondence between weight-edge. This system, 
once the individual cost is obtained, calculates the total cost of 
each path. When all cost is calculated, the system order all cost 
by one specific criterion (for example, from least to greatest, 
from greatest to least, etc). 

Finally, system has a set of ordered paths and the system can 
choose the best path. In Figure 6 shows first system to calculate 
TSP, the reference Figure 6-21 in figure represents the circuit to 
obtain the Hamiltonian path, Figure 6-22 the connection inter-
face with interface Figure 6-25 of a data processing module Fig-
ure 6-23, reference Figure 6-24 is a database and Figure 6-26 a 
cost and sorting calculation module. The reference Figure 6-27 
represents an external data request device. 

 
 
 
 
 
 
 
 
 
 
 
On the other hand, the intermediate data was stored in the 
database, i.e. the weights of the edges, etc. being these systems 
as support to the calculations, which are going to be made or 
are have been made. 
 
At second system (system shown in Figure 7) uses memories 
to store and manipulate all weight of vertex-edge. These 
memories could be an electronics circuit using Inchrosil tech-
nology or other kind of memories. In this case, system does 
not store real value of weight at the edge, only a reference of 
memory address (point reference), because the value can be 
huge and any system address has an established size, by this 
reason, it is better to store only memory address, later with 
this memory address, system can access real value stored. 
On the other hand, this second system follows next steps: 
when the Hamiltonian paths are determined, by the circuit 
Figure 7-21, it seeks the value of the edges in the memory Fig-
ure 7-28, since as we know its address, we will know its value.  
 
These costs are added and will be looked for by circuitry me-
diation, i.e. a bus Figure 7-32 and adders Figure 7-30, on the 

other hand, to obtain the total cost of each path which can be 
stored in the memory Figure 7-28 with consecutive addresses.  
 
As in the previous implementation, the user or the system 
which receives this information as input chooses with which 
path it remains, by criteria of choice, outside the devices de-
scribed in this article. In this example, reference Figure 7-22 
represents the connection interface with an interface Figure 7-
25a of the data processing module Figure 7-23a, reference Fig-
ure 7-29 the sorting module, Figure 7-31 a connection interface 
of module Figure 7-23a with a data fetching device Figure 7-
27. 
 
 
 
 
 
 
 
 
 
 
 
 
4   OBTAINING EULERIAN PATHS 
 
Eulerian paths could define as graph which visits every edge 
exactly once, with singularity starts and ends on the same ver-
tex. Therefore, an Eulerian path is a cycle which contains all 
edges of a graph just once. This problem was posed and re-
solved by Leonhard Euler himself in 1736 in a problem which 
has the name of the seven bridges of the city of Königsberg.  
 
The problem is enunciated in the following form: two islands 
in the Pregel River, in Königsberg are joined together and with 
land by seven bridges. 

 
• Is it possible to take a walk starting by any of the four 

parts of land, crossing each one of the bridges just once? 
 
Euler approached the problem representing each part of land 
by one point and each bridge by a line, joining the correspond-
ing dots. Then, the previous problem can be transferred to the 
following question:  

 
• Is it possible to travel round the representation with-

out repeating the lines? 
 

Euler demonstrated that it was not possible because the num-
ber of lines that affect each dot is uneven (a necessary condi-
tion to be able to enter and exit each dot). Therefore, this prob-
lem posed questions such as the following;  

 
• How is it possible to cover the cable of this electricity 

grid without repeating sections of grid?  
 
• How can this route be performed, passing through 

specific streets? 
 

 
Figure 6: First System to calculate any TSP. 

 

 
Figure 7: Second System to calculate any TSP. 
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There is a complexity to solve these cycles’ problems, by this 
reason, we have considered inversely, i.e. all vertices could be 
converted in edges and all edges could be converted in verti-
ces, with simple conversion, we can calculate any Hamiltonian 
path associated of conversion. On the other hand, since now 
the vertices represent the edges and it is necessary to know 
what sequence of vertices we should follow to be able to pass 
through all the edges. 
 
Let us suppose the directed and non-weighted graph of Figure 
8, which would be a multi-graph, i.e. a non-deterministic au-
tomaton. 

 
 
 
 
 
 
 
 
 

The graph of Figure 8 can also be represented as follows, 
where V1 is the set of vertices and E1 is the set of edges. 

 
G1=(V1,E1) with V1=(v1,v2,v3) and E1=(a1,a2,a3,a4,a5,a6) 

 
Furthermore, we have the following vertex links, by means of 
edges; 
 
U={(v1,v2,a1),(v1,v2,a2),(v1,v2,a3),(v2,v3,a4),(v2,v3,a5),(v2,v3,a6)
,(v3,v1,a6)} 
 
Where the nomenclature used for these links is (source vertex, 
destination vertex, edge). If said inversion is made, and if the 
edges are considered as vertices and the vertices as edges, we 
would obtain the following graph. 
 

G2=(V2,E2) with V2=(a1,a2,a3,a4,a5,a6) and 
E2=((v1,v2),(v2,v3),(v3,v1)) 

 
Furthermore, we have the following vertex links, by means of 
edges; 

 
W= {(a1, v1, v2, v2, v3, a4) . . .} 

 
Therefore, the graph will have the form shown in Figure 8. 
Consequently, if the Hamiltonian path of the previous graph 
G2 is shown, it can be stated that there is a solution or Eulerian 
path G1. It can also be considered that the graph is weighted, 
the total costs of each one of the paths can be calculated and, 
therefore, sorted by cost, although the Eulerian paths do not 
have weight, new problems of optimization in the Eulerian 
paths could be posed. In conclusion, if a Hamiltonian path 
exists in graph G2, it can be stated that there is an Eulerian 
path in graph G1. Finally, it can be stated that Eulerian cycles 
can be resolved, for which purpose, when encoding the base 
of strands or banks of strands, it was established that the ini-
tial node was the same as the final. In this way, cycle problems 
can be resolved using the circuit descripted. 

 
5   FINDING SHORTEST OR MOST OPTIMUM ROUTE BE-
TWEEN TWO POINTS 
 
A typical problem of graph theory is to find the shortest or 
most optimal route from an initial point to an end point. The 
approach presented to this problem is to consider a directed 
graph, weighted (positive or negative) and using the charac-
teristics of the DNA, by Inchrosil technology. In this way, us-
ing a device based on Inchrosil, it is possible to find the short-
est or most optimal path. Let us give an example, supposing 
that we want to resolve the problem of Figure 9 by the lists of 
adjacencies and set theory. 
 
 

 
 
 
 

 
 

In the graph of Figure 9, it is possible to represent as a list of 
adjacencies, where the nomenclature would be the following; 
(source vertex, edge, destination vertex), therefore, the graph 
would remain as follows. 
 

• Node(s): {(s,x1,u),(s,x2,v)} 
• Node(u): {(u,x3,w),(u,x7,v)} 
• Node(v) : {(v,x5,t)} 
• Node(w): {(w,x4,v),(w,x6,t)} 

 
It should be highlighted that, in graph theory, the data struc-
ture, list of adjacencies, is defined as a structure which permits 
associating a list which contains all those vertices j, which are 
adjacent thereto, to each vertex i. In this way, space is saved in 
its representation and, in addition, the graph can be represent-
ed by a vector of n components (if |V|=n), where each com-
ponent is going to be a list of adjacency corresponding to each 
one of the vertices of the graph. Furthermore, each element of 
the list consists of a field indicating the adjacent vertex. On the 
other hand, if the graph was labelled, it would be necessary to 
add a second field to show the value of the label. 
 
Using set theory, we can form a set with all elements of the 
adjacency list, i.e. the elements (vertex, edge, vertex). This set 
that we have formed would have premises which are enumer-
ated below. 
 

• If there are two elements belonging to the set, such as 
e1 and e2, it is observed that the end component of e1 is 
equal to the initial component of e2; both elements re-
act, creating a new element, which will belong to the 
set. 

• If there are elements which belong to the set, which 
contain components which are initial and final, they do 
not react with the rest, since they would now be solu-
tion. 

• Two elements that react have a positive ratio or 1; in-

 
Figure 8: Eulerian Path. 

 

 
Figure 9: Eulerian Path. 
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stead two elements which do not react have a negative 
ratio or 0. 

• The elements with initial components and that belong 
to the adjacency lists, once reacted do not react again. 

 
If it is known that E is the set of elements and C is the set of 
components, we can see that the reaction is the following op-
eration: 
 
∀x∈C | ∃yax, xbz∈E so that yaxxbz ≡yaxbz with y, a, x, b∈C 
and yaxbz∈E 
 
In this case, we have a set of elements belonging to the adja-
cencies lists, which we will denote as Element-[i], therefore, 
the set would initially remain in the following form. 
 

 Element-1: {(s, x1, u)} 
 Element-2: {(s, x2, v)} 
 Element-3: {(u, x3, w)} 
 Element-4: {(u, x7, v)} 
 Element-5: {(w, x4, v)} 
 Element-6: {(w, x6, t)} 
 Element-7: {(v, x5, t)} 

 
With this initial set, its elements can be analysed and it can be 
seen how these premises associated to the set can be fulfilled 
and new elements be created. In this case, it can be seen that 
Element-1 would react with Element-3 and Element-4, form-
ing Element-8 and Element-9, respectively. It can also be seen 
that Element-2 reacts with Element-7 to form Element-10, 
which is now solution. After this, the set would remain as fol-
lows. 

 Element-1: {(s, x1, u)} [does not react] premise 4 
 Element-2: {(s, x2, v)} [does not react] premise 4 
 Element-3: {(u, x3, w)} 
 Element-4: {(u, x7, v)} 
 Element-5: {(w, x4, v)} 
 Element-6: {(w, x6, t)} 
 Element-7: {(v, x5, t)} 
 Element-8: {(s, x1, u, x3, w)} 
 Element-9: {(s, x1, u, x7, v)} 
 Element-10: {(s, x2, v, x5, t)} 

 
In a following round, it is observed that Element-8 can react 
with Element-5 forming Element-11 and, that also Element-8 
can react with Element-6 to form Element-12, finally, Element-
9 reacts with Element-7 forming Element-13. In this round the 
set would be as follows. 
 

 Element-1: {(s, x1, u)} [does not react] premise 4 
 Element-2: {(s, x2, v)} [does not react] premise 4 
 Element-3: {(u, x3, w)} 
 Element-4: {(u, x7, v)} 
 Element-5: {(w, x4, v)} 
 Element-6: {(w, x6, t)} 
 Element-7: {(v, x5, t)} 
 Element-8: {(s, x1, u, x3, w)} 
 Element-9: {(s, x1, u, x7, v)} 
 Element-10: {(s, x2, v, x5, t)} 

 Element-11: {(s, x1, u, x3, w, x4, v)} 
 Element-12: {(s, x1, u, x3, w, x6, t)} 
 Element-13: {(s, x1, u, x7, v, x5, t)} 

 
Observing the set, it is seen that there is a single reaction, that 
of Element-11, which reacts with Element-7 to form Element-
14. With this last reason, the set would be as follows. 
 

 Element-1: {(s, x1, u)} [does not react] premise 4 
 Element-2: {(s, x2, v)} [does not react] premise 4 
 Element-3: {(u, x3, w)} 
 Element-4: {(u, x7, v)} 
 Element-5: {(w, x4, v)} 
 Element-6: {(w, x6, t)} 
 Element-7: {(v, x5, t)} 
 Element-8: {(s, x1, u, x3, w)} 
 Element-9: {(s, x1, u, x7, v)} 
 Element-10: {(s, x2, v, x5, t)} 
 Element-11: {(s, x1, u, x3, w, x4, v)} 
 Element-12: {(s, x1, u, x3, w, x6, t)} 
 Element-13: {(s, x1, u, x7, v, x5, t)} 
 Element-14: {(s, x1, u, x3, w, x4, v, x5, t)} 

 
It can be seen that the results are Element-10, Element-12, El-
ement-13 and finally Element-14, since they have initial and 
final components. The operation of this previous approach, to 
find the solutions or paths, is performed sequentially. But in 
the circuit is performed in parallel form, i.e. the circuit has 
considered two sets; the first set C1, is formed by the elements 
which contain initial components and the elements that do not 
contain final components. The second set C2 is formed by the 
elements that contain final components and the elements 
which do not contain initial components. Both sets are encod-
ed by Cod-Inchrosil and, stored in different strands Figure 10-
10, respectively. These strands link their components by a cir-
cuiting which contains comparers Figure 10-9, forming a ma-
trix as observed in Figure 10; in this way, they react in parallel 
form, obtaining a set of reactions encoded as positive (1) or 
negative (0). These reactions form a matrix of 0s and 1s. There-
fore, there are two sets C1 and C2, which represent the two 
aforementioned sets and which are encoded in Inchrosil 
strands. On the other hand, we have a Cr, which is formed by 
the reactions between the elements of set C1 and C2; in this 
way, the reaction is redefined as the operation, where e2∈C2 
and e1∈C1, then e1e2∈Cr, with being the reaction and the val-
ues it may take are 0 or 1. As is observed, a new element is not 
created in the reaction which must react, but all react at the 
same time and it is indicated in a matrix, with a 1 if there had 
been a reaction or the reaction is positive and, in contrast, with 
a zero if there had not been a reaction or the reaction has been 
negative. 
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Once the matrix has been obtained with the reactions of all 
elements with all others, this information is passed to a buffer 
and, by software or circuitry, path recovery algorithms are 
applied to it, which do not have a very high cost and are of 
polynomial order. If weighted graphs are considered, the 
weights would be stored in a memory (Inchrosil memory or 
another type of memory), therefore, the edges of the previous 
graph contain the direction and not the value of the weight, 
the motive why large quantities can be used for the weights 
and the directions have a determined length. Once the edges 
of the path have been found, it is only necessary to add the 
costs of each edge, to obtain the total cost of the path. Then 
with the total costs, the paths can be sorted according to sort-
ing criteria; all of this can be performed by circuitry or soft-
ware modules, which would be connected with the device. 
This circuit resolves the problems posed in Dijkstra's, Floyd-
Warshall and Bellman-Ford's and Ford-Fulkenson's algo-
rithms, as they can consider negative costs, etc. 

6 CONSULSION 
In conclusion, the advantage of these systems is the easy in-
corporation in existing hardware systems, since both are based 
on electronics and integrated circuits. On the other hand, it is a 
hardware alternative for the existing calculation systems, since 
with the software systems they need another environment 
(operating system, virtual machines, etc.) to function and, in-
stead, this device would be connected directly to the circuitry 
of the host device. 
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Figure 10: Circuit to solve short path 
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