
International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 669
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Resolving Hamiltonian Path Problems, Travelling
Salesman Problems, Euclidean Problems and

Route Problems with Inchrosil
Carlos Llopis, Silvia Llopis, Jose Daniel Llopis

Abstract— One of hard mathematical problems to find a solution, it is the Hamiltonian path or the salesman problem, because when
number of nodes (cities) is increasing, any system needs more time to resolve, being considered this mathematical challenge as non-
polynomial complete problem (NP-complete or NP-Hard). On the other hand, lot problems can reduce to graph form, being very easy to
use any Hamiltonian graph to solve them, by this reason, it is an open problem to find some technology can resolve any Hamiltonian path
in approximately polynomial time (P≈NP). In this article, we can show one system, which uses Inchrosil as storage unit of nucleotides, to
solve any Hamiltonian path in approximately polynomial time, by this reason, we have based in our research in all knowledge about DNA
computing and mathematical equations using DNA (in particular their four characters and their association rules) to create a system can
solve any Hamiltonian Graph, using Inchrosil circuits.
.

Index Terms— Hamiltonian path, graph, DNA Computing, DNA, Inchrosil, Computational Complexity, Euclidian Problem.

—————————— ——————————

1 INTRODUCTION
ny mathematical and computer problem could be classi-
fied according their inherent difficulty and its time neces-
sary to solve the entire problem (Computational Time),

this science area is called Computational Complexity Theory [1].
One computational problem could be viewed as a collection of
instructions or equation, which is solved individually to find the
entire solution of the problem; other people define one compu-
tational problem as some problem could be solved in a comput-
er, both definitions are complementary to define a computa-
tional problem [2]. Normally, computational and mathematical
problem can divide in next groups:

• P Complexity: This group contains all problems can be
solved in a deterministic machine and one polynomial
time.

• NP Complexity: This group contains all problems can
be solved in a non-deterministic machine and one pol-
ynomial time.

• NP Complete Complexity: This group contains all
problems can be solved in a non-deterministic machine
and not polynomial time.

On the other hand, there is other science area focused in resolv-
ing combinatorial problem by means of graph theory [3] [4],
because any combinatorial problem could be converted to
graph. In general, one graph can be defined as set of objects,
where each object is connected with another object by links.
Those connections are called edges and they can have direction
or not inside of the path, making up directed or undirected
graphs. On the other hand, each object is called vertex, as we
said before, each vertex can join with other vertex by one or
several edges with different vertex, inclusive itself. The graphs
can have several classifications depending of different charac-
teristics (weight edges, number of connections, direction, etc).

One pioneer inside of graph theory and topology was Leonard
Euler, who in 1736 shows “the Seven Bridges of Königsberg prob-
lem” [5], highlight, in that period, Königsberg was Prussian city
(now Kaliningrad, Russia) with seven bridges, over the Pregel
River. The Euler’s problem formulates as one pedestrian is pos-
sible to walk through the city that would cross each bridge once
and only once. This problem is an excellent combinatorial prob-
lem to convert in a graph form, because each part of the city is
possible to represent as element of graph. Later, the Irish math-
ematician, William Rowan Hamilton and the British mathema-
tician, Thomas Kirkman [6] formulated mathematically in
1800’s the Travelling Salesman Problem (next lines, we can
called as TSP), in same time, it was formulated Hamiltonian
Path Problem (following HPP), one of the most mathematical
complex problems in graph theory, impossible to do in deter-
ministic algorithm with huge number of elements.

In XX century, Edsger Wybe Dijkstra published one algorithm
[7], which is a graph search algorithm that solves the single-
source shortest path problem for a graph with non-negative
edge path costs, making a shortest path tree, mainly this algo-
rithm is often used in routing task or part of other graph algo-
rithms. Later, Robert W. Floyd and Wharshall [8] [9] modified
Dijkstra’s algorithm, which compares all possible paths through
the graph between each pair of vertices to find shortest paths in
weighted graph with positive or negative edge weights. Finally,
From Dijkstra to now, there are lot algorithms or modifications
of these algorithms to calculate shortest path or any route.

On the other hand, today the current computing systems are
based on a sequential technology established by John Von
Neumann [10] [11] in the middle of the last century. These se-
quential computers are good at resolving mathematical prob-
lems, because they have a powerful arithmetic unit inside,
which can do complex operations with binary arithmetic.

A

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 670
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Also, these computers have difficulties with so-called turnkey
problems, where all possible solutions should check to find a
final solution, by this reason; these systems lost a huge time in
the preparation all possible solution and later check one per
one, being their computational time close to exponential or log-
arithmic order. One perfect example is HPP, which with a few
nodes or cities, any system can solve it, but when the number or
cities or nodes is huge, this problem cannot solve in polynomial
time or similar, by this reason, there is not deterministic algo-
rithm to solve the problem.

At the moment, scientific community can solve these problems
with the construction of parallel computers or supercomputers,
which divide and share each part of the problem between all
different nodes of the system. This methodology can reduce the
computing time close to polynomial, but finally, these solutions
consume many resources in communications between a lot in-
terconnected nodes, which are normally sequential computers.
There are other initiatives to solve combinatorial problems, for
example, using organic materials, we can find bacterial comput-
er to solve HPP [12], on the other hand, using DNA to resolve
HPP by Prof. Adleman [13], the 3-SAT problem using DNA
[14], implementations in membrane computing [15] and others
organic solutions.

In this way, using organic materials (in particular DNA), in
1994, Professor Adleman formulated a new alternative for pro-
gramming with organic DNA, using huge mathematical
knowledge about computation with DNA and last advances in
DNA. He created a DNA computer to solve HPP with seven
nodes, using organic material. Which this experiment, he
demonstrated that NP-Complete problems could be resolved in
a computational time very close to the polynomial, being very
close to find one solution of universal problem of P≈NP.

With this experiment, Prof Adleman shows the huge potential
of DNA computing, breaking walls using organic material in
computer science. Also, DNA Computing has huge potential to
solve complex problems, but this methodology of computing
contains certain barriers. For one side, implicit characteristics of
material used (organic DNA), because is mainly perishable and
long of time it dies. Other side, DNA machines are difficult to
integrate in other environments as organics or silicon system,
mainly in communication between them, by this reason, these
systems are limited only for scientific environments and theo-
retical formulations.

Finally, in other field as optical, we can find works as solving
HPP with light-based computer [16], on the other hand, using
mathematical-theoretical equation for solving HPP [17], also
with genetic algorithms to solve TSP [18] or by other systems or
methodologies in different science areas.

This article, we shall show a solution, which uses all mathemat-
ical knowledge of DNA Computing, but without chemistry
procedures to compute problems, only using artificial and bina-
ry components, being this computation a mixture between
DNA computing and traditional Silicon Computing. Our solu-
tion could be a complementary to DNA computing and soon

future to create bridges to join both technologies (artificial and
organic), using for example, any biosensor or other system to
convert any organic signal in digital signal and vice verse.

2 RESOLVING HAMILTONIAN PATH PROBLEM

We can define HPP as one graph problem, which has a compu-
tational complexity of NP-Complete. HPP consist mainly in one
path in a directed or undirected graph that visits each vertex
(city) exactly once. Each HPP of n vertex has (n!) different se-
quences of vertex might be Hamiltonian paths in an n-vertex
graph (It is called graph complete). Obvious way could be use
any brute force algorithms to solve any HPP, but that test all
possible solutions would be a slow, for example, suggesting, we
have HPP of 50 vertices, we need factorial of fifty combinations
of these vertices, which are possible solutions or Hamiltonian
Path, by this reason, it is necessary to check one per one all
combinations to find all truth Hamiltonian path, being a hard
work and sometime impossible to do with sequential comput-
ers. There are several theoretical approaches to simplify this
calculation as: dividing graph edges [19], other approach is us-
ing dynamic programming (algorithm of Bellman), where this
algorithm finds all shortest paths [20]. In the same way, we can
find in Ford’s work [21], Moore [22] and Yen [23] other useful
approach to solve graph problems.

In 1994, Professor Adleman demonstrated a proof-of-concept,
using DNA as way to compute any hard problem, in particular
the HPP of seven cities. Adleman solve a HPP, where there is a
path from city origin to city destination passing each vertex ex-
actly once.

This algorithm has computational complexity of O (n) bio-
process and one space complexity of n! DNA strands. Also we
need for 100 nodes graph almost 15 1018 millions of tonnes in
organic material (DNA), in consequences impossible to manipu-
late and calculate any huge problem with this methodology.

On the other hand, there are parallel and distributed implemen-
tations for the solution of the HPP, using a cluster of computers,
but normally, they need a huge amount of resources and com-
munications between them, finally we can limitations to solve
big problems, using these solutions. By this reason, in this arti-
cle, we could show other alternative solution, using electronic
components and all knowledge of DNA computing (without its
chemical procedures).

The advantage that inorganic DNA (Inchrosil [24] [25]) has
compared with sequential technologies is the great parallelism
in the embodiment of the operations and it is possible to create
complex structures to solve combinatorial problems, because
Inchrosil can represent any DNA structure (simple strand, dou-
ble strands, with holes, etc).

In particular at HPP, with Inchrosil, we can create same envi-
ronment of Adleman’s experiment, by this reason and based on
the aforementioned characteristics, Inchrosil can create simple
strand to codify any vertex and edge of Hamiltonian path and
can solve in parallel any problem.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 671
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

As we said before, HPP is a NP hard complete problem, being
very difficult to solve with any deterministic algorithm with
polynomial order, by this reason, it is better to use non-
deterministic problem to solve any HPP, one example of non-
deterministic algorithm is presented next lines:

Where Inputs are: Graph, Vin and Vout

• All paths existing in the graph are generated randomly.

• All the paths don’t contain the inputs are eliminated.

• All those paths which do not have the required vertices
are also eliminated.

• For each vertex, the paths are rejected which do not in-
clude the actual vertex.

Where possible outputs are: YES (If paths exist) NO (otherwise)

Therefore, in a conventional computer system, normal compu-
tational time cannot be polynomial, because it is necessary to
compare all the cities one by one to find the path from one ini-
tial city (Vin) to one final city (Vout). The electronic system de-
scribed below was approached from the seven (7) vertices and
eleven (11) edges graph as one initial proof-of-concept, we can
see in Figure 1, seven node graphs, but it is possible with this
system a huge system with lot nodes.

First step is encoding the graph of Figure 1, using cod-Inchrosil
code [24], where each city (vertex) had number of nucleotides in
its codification, i.e. following the Adleman´s experiment, 20
nucleotides. On the other hand, the edges are composed of the
same number, 20 nucleotides, which correspond to last nucleo-
tides of origin city and the initial 10 nucleotides of destination
city (next Figure 2 shows the codification from City I to City J).

With above codification, it is possible to create one DNA strand,
which contains all vertex and edges of graph (Figure 1). With
this DNA strand would offer the possibility, that in worst case

to find a solution, it is necessary to compare a complete graph
(we can define a graph complete as one graph, which contains
all edges possible, G= (V, VxV), being before V, the set contain
all vertices of graph), and in the best case, only graph showed in
Figure 1.

This possibility offers some final programmer/user to choose
one specific codification of graph (i.e. number of edges and ver-
tex), always inside of limits at graph. For example, in our case,
there is a DNA chain of 5040 nucleotides (factorial of seven,
because there are seven cities in our graph), by this reason, final
programmer/user could activate only complementary part of
this DNA chain in specific edges at graph to analyze. In this
case, when we are looking for Hamiltonian path, only we search
a complementary part in those specific edges.

In the same way, Figure 3 shows a codification of graph, which
has been codified by DNA, where Ei represent vertex (in this
case, cities) and Aij represent edges (roads between cities). On
the other hand, graph of Figure 1 would be called ‘G’ and its
encoding could be seen in Figure 3, where A0…An represents
edges of graph and E0….En represents cities or nodes of prob-
lem formulated.

Next step consists to arrange all the possible Hamiltonian paths
inside of a seven vertices graph complete, by this reason, using
cod-Inchrosil was created a set of 5040 DNA chains (factorial of
seven), with strand length of 140 nucleotides (if problem has
seven cities and each city has codification of 20 nucleotides, fi-
nal strand length is 140 nucleotides). All this set of strand are
organised by matrix form, because, it was more convenient to
be able to approach a final three-dimensional chip, and in this
way to emulate the nature, finally this matrix is called ‘CG’ in
our experiment.

On the other hand, in set theory [26] is normally used to delimit
the scope of a proposal, to compare if some object is part or not
of one specific set, i.e. one set ‘S’ is defined as “YES”/ ”NO”, if
and only if for some object α in included or not in ‘S’. In our
case, we can compare each edge of ‘CG’ matrix with each specif-
ic edge in ‘G’ graph. All this operation can do in parallel way
and the same time can obtain all edges are included in ‘G’
graph. Being each edge of ‘CG’ object need be compared with
edge set proposal for programmer to determine which of these
edges are included in ‘G’, remember, ‘CG’ is all possible solu-
tions of the problem. As it is described in [24], Inchrosil is an
electronic circuit allows storing all information of one pair of
nucleotides by binary form, you can see Figure 4. This minimal
unit allows create complex form or set of nucleotides (activating
or not complementary chain), in our example all chains of ‘G’
graph and ‘CG’ matrix.

Figure 1: Complete Graph of HPP

Figure 2: Codification Vertex I and J

Figure 3: Graph codified by DNA

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 672
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Above, we have described a parallel comparison between ‘CG’
matrix and ‘C’ graph to find all possible edges included in ‘C’.
To be able to perform these comparisons in our experiment is
necessary to use the philosophy of logical half-adders [27], car-
ry-save adders (CSA) and Wallace trees. Highlight, for our ex-
periment is removed carry option in massive comparison, doing
direct additions of two inputs. On the other hand, following
truth table of XOR gate, when two inputs are the same result,
final result is 0, by this reason, in our experiment we have con-
sidered to invert all outputs, being 1 in all positive case and 0 in
all negative case. Due to this approach, comparers were devel-
oped with XNOR gates to resolve the problem, by this reason;
in our experiment, we have joined together 40 XNOR gates,
where if each edge has 20 nucleotides, being 40 bits per edge
and 80 bits of inputs, since it will be compared two by two.
With this system, it is possible to create CSA without carry,
where joining all XNOR gates would giving a unique result of
40 bits.

Finally, the system offered a 40 bits result, which was not opti-
mum to specify one edge is the same or not, because final an-
swer should be ‘yes’ or ‘no’ (i.e. 0 or 1). In this case, we needed a
system to check all input and to generate only one output, by
this reason, using only AND gates, we were able to create a sys-
tem, which has 40 inputs and only one output, where system
gives a ‘1’ as logical result, this result would mean that both
edge are the same, on the other hand, if logical result is ‘0’, both
edges are different. In case of positive result, edge is part of ‘G’
graph (which is a possible Hamiltonian path).

This process could be parallel, by this reason, all comparer are
distributed by one matrix form to compare by parallel way, all
edge (two to two) in twice systems (‘G’ graph and ‘CG’ matrix).
Highlight, with this system we can obtain if one edge is con-
tained in ‘G’ graph solution, but with this sub-method do not
indicate yet, if ‘G’ graph solution is a Hamiltonian Path, by this
reason, in our experiment, we have used sub-method of Wallace
trees methodology [28]. In general, they have same philosophy
of Wallace Trees, but some specific customizations in their
structure, i.e. we have created one for each sub-result of com-
parison (column of matrix). These systems are composed by OR
gates, creating with this way, several levels as Wallace trees to
find all possible coincidences between edges and chains.

The final objective is to find one chains where all edges have
coincidences, in this case, we would have a Hamiltonian Path.
That is possible because all outputs of OR gate system are con-
nected with other system compose for AND gates and only one
output, which indicates ‘YES’ or ‘NO’ the possible solution is
Hamiltonian path.

Finally, we can obtain a vector with n components (being n in
our case, 5040 chains), where one element of vector has ‘1’ logi-
cal value, this element indicates is Hamiltonian path. In this
case, we considered tp as time to create all possible solutions, tc
as time to compare all edges of one component, tf as time to
compare all sub-results, ta as additional time (delays in gates,
communications, check final vector, etc.) and finally, n as num-
ber of components, we can formulated final time is T = tp + n tc
+ tf + ta, being this time close to polynomial order, because be-
fore times are considered in polynomial order.

On the other hand, due modularity of the system, it is possible
to create complex structures or system with huge number of
nodes, because we can create circuit to solve partial solutions
and later to join all solution to find final solution.

In Figure 5, we can see all circuit to calculate any Hamiltonian
path of 7 cities, where the reference Figure 5-18 is ‘CG’ matrix
with all possible Hamiltonian paths, the reference Figure 5-12 is
the module, which compares edges between ‘CG’ and ‘C’, refer-
ences Figure 5-15 and Figure 5-16 are logical gates to calculate
similarity between DNA chains and finally, the reference Figure
5-20 is a vector with all comparison.

3 RESOLVIND TRAVELLING SALESMAN PROBLEMS
The travelling salesman problem (TSP) is one of the most fa-
mous and best studied in the computational area, being one the
most difficult to resolve, due its complexity, which is considered
a NP-complete problem. In the previous section, we have de-
scribed an electronic system to solve Hamiltonian path problem
with a cost approximately of polynomial order, in this para-
graph, the graph to analyze has a weighted and direction in its
paths, where only one or set Hamiltonian paths are solution of
TSP, so first step would be found all Hamiltonian paths at the
graph, and next steps would be calculated final cost each Ham-
iltonian path found, using its weighted and directions, by this
reason, in our research, we have used the same infrastructure
explained above, which would obtain all Hamiltonian paths,

Figure 4: Inchrosil Unit

Figure 5: Hamiltonian Path Circuit

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 673
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

later with these paths, the system would calculate each individ-
ual cost and compare all cost to get which is the best Hamiltoni-
an path, always depending an initial characteristics established
by programmer/user.

All these calculations could be done in parallel, also all criteria
to sort path cost could be stored in different modules of the sys-
tem, in this way any operation is quick and faster to do. In this
article, we have considered two different systems to do all
mathematical operation and choice the best Hamiltonian path
cost, depending one specific criteria. The first system contains
software to calculate and storage all paths cost, which determi-
nates the correspondence between weight-edge. This system,
once the individual cost is obtained, calculates the total cost of
each path. When all cost is calculated, the system order all cost
by one specific criterion (for example, from least to greatest,
from greatest to least, etc).

Finally, system has a set of ordered paths and the system can
choose the best path. In Figure 6 shows first system to calculate
TSP, the reference Figure 6-21 in figure represents the circuit to
obtain the Hamiltonian path, Figure 6-22 the connection inter-
face with interface Figure 6-25 of a data processing module Fig-
ure 6-23, reference Figure 6-24 is a database and Figure 6-26 a
cost and sorting calculation module. The reference Figure 6-27
represents an external data request device.

On the other hand, the intermediate data was stored in the
database, i.e. the weights of the edges, etc. being these systems
as support to the calculations, which are going to be made or
are have been made.

At second system (system shown in Figure 7) uses memories
to store and manipulate all weight of vertex-edge. These
memories could be an electronics circuit using Inchrosil tech-
nology or other kind of memories. In this case, system does
not store real value of weight at the edge, only a reference of
memory address (point reference), because the value can be
huge and any system address has an established size, by this
reason, it is better to store only memory address, later with
this memory address, system can access real value stored.
On the other hand, this second system follows next steps:
when the Hamiltonian paths are determined, by the circuit
Figure 7-21, it seeks the value of the edges in the memory Fig-
ure 7-28, since as we know its address, we will know its value.

These costs are added and will be looked for by circuitry me-
diation, i.e. a bus Figure 7-32 and adders Figure 7-30, on the

other hand, to obtain the total cost of each path which can be
stored in the memory Figure 7-28 with consecutive addresses.

As in the previous implementation, the user or the system
which receives this information as input chooses with which
path it remains, by criteria of choice, outside the devices de-
scribed in this article. In this example, reference Figure 7-22
represents the connection interface with an interface Figure 7-
25a of the data processing module Figure 7-23a, reference Fig-
ure 7-29 the sorting module, Figure 7-31 a connection interface
of module Figure 7-23a with a data fetching device Figure 7-
27.

4 OBTAINING EULERIAN PATHS

Eulerian paths could define as graph which visits every edge
exactly once, with singularity starts and ends on the same ver-
tex. Therefore, an Eulerian path is a cycle which contains all
edges of a graph just once. This problem was posed and re-
solved by Leonhard Euler himself in 1736 in a problem which
has the name of the seven bridges of the city of Königsberg.

The problem is enunciated in the following form: two islands
in the Pregel River, in Königsberg are joined together and with
land by seven bridges.

• Is it possible to take a walk starting by any of the four

parts of land, crossing each one of the bridges just once?

Euler approached the problem representing each part of land
by one point and each bridge by a line, joining the correspond-
ing dots. Then, the previous problem can be transferred to the
following question:

• Is it possible to travel round the representation with-

out repeating the lines?

Euler demonstrated that it was not possible because the num-
ber of lines that affect each dot is uneven (a necessary condi-
tion to be able to enter and exit each dot). Therefore, this prob-
lem posed questions such as the following;

• How is it possible to cover the cable of this electricity

grid without repeating sections of grid?

• How can this route be performed, passing through

specific streets?

Figure 6: First System to calculate any TSP.

Figure 7: Second System to calculate any TSP.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 674
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

There is a complexity to solve these cycles’ problems, by this
reason, we have considered inversely, i.e. all vertices could be
converted in edges and all edges could be converted in verti-
ces, with simple conversion, we can calculate any Hamiltonian
path associated of conversion. On the other hand, since now
the vertices represent the edges and it is necessary to know
what sequence of vertices we should follow to be able to pass
through all the edges.

Let us suppose the directed and non-weighted graph of Figure
8, which would be a multi-graph, i.e. a non-deterministic au-
tomaton.

The graph of Figure 8 can also be represented as follows,
where V1 is the set of vertices and E1 is the set of edges.

G1=(V1,E1) with V1=(v1,v2,v3) and E1=(a1,a2,a3,a4,a5,a6)

Furthermore, we have the following vertex links, by means of
edges;

U={(v1,v2,a1),(v1,v2,a2),(v1,v2,a3),(v2,v3,a4),(v2,v3,a5),(v2,v3,a6)
,(v3,v1,a6)}

Where the nomenclature used for these links is (source vertex,
destination vertex, edge). If said inversion is made, and if the
edges are considered as vertices and the vertices as edges, we
would obtain the following graph.

G2=(V2,E2) with V2=(a1,a2,a3,a4,a5,a6) and
E2=((v1,v2),(v2,v3),(v3,v1))

Furthermore, we have the following vertex links, by means of
edges;

W= {(a1, v1, v2, v2, v3, a4) . . .}

Therefore, the graph will have the form shown in Figure 8.
Consequently, if the Hamiltonian path of the previous graph
G2 is shown, it can be stated that there is a solution or Eulerian
path G1. It can also be considered that the graph is weighted,
the total costs of each one of the paths can be calculated and,
therefore, sorted by cost, although the Eulerian paths do not
have weight, new problems of optimization in the Eulerian
paths could be posed. In conclusion, if a Hamiltonian path
exists in graph G2, it can be stated that there is an Eulerian
path in graph G1. Finally, it can be stated that Eulerian cycles
can be resolved, for which purpose, when encoding the base
of strands or banks of strands, it was established that the ini-
tial node was the same as the final. In this way, cycle problems
can be resolved using the circuit descripted.

5 FINDING SHORTEST OR MOST OPTIMUM ROUTE BE-
TWEEN TWO POINTS

A typical problem of graph theory is to find the shortest or
most optimal route from an initial point to an end point. The
approach presented to this problem is to consider a directed
graph, weighted (positive or negative) and using the charac-
teristics of the DNA, by Inchrosil technology. In this way, us-
ing a device based on Inchrosil, it is possible to find the short-
est or most optimal path. Let us give an example, supposing
that we want to resolve the problem of Figure 9 by the lists of
adjacencies and set theory.

In the graph of Figure 9, it is possible to represent as a list of
adjacencies, where the nomenclature would be the following;
(source vertex, edge, destination vertex), therefore, the graph
would remain as follows.

• Node(s): {(s,x1,u),(s,x2,v)}
• Node(u): {(u,x3,w),(u,x7,v)}
• Node(v) : {(v,x5,t)}
• Node(w): {(w,x4,v),(w,x6,t)}

It should be highlighted that, in graph theory, the data struc-
ture, list of adjacencies, is defined as a structure which permits
associating a list which contains all those vertices j, which are
adjacent thereto, to each vertex i. In this way, space is saved in
its representation and, in addition, the graph can be represent-
ed by a vector of n components (if |V|=n), where each com-
ponent is going to be a list of adjacency corresponding to each
one of the vertices of the graph. Furthermore, each element of
the list consists of a field indicating the adjacent vertex. On the
other hand, if the graph was labelled, it would be necessary to
add a second field to show the value of the label.

Using set theory, we can form a set with all elements of the
adjacency list, i.e. the elements (vertex, edge, vertex). This set
that we have formed would have premises which are enumer-
ated below.

• If there are two elements belonging to the set, such as
e1 and e2, it is observed that the end component of e1 is
equal to the initial component of e2; both elements re-
act, creating a new element, which will belong to the
set.

• If there are elements which belong to the set, which
contain components which are initial and final, they do
not react with the rest, since they would now be solu-
tion.

• Two elements that react have a positive ratio or 1; in-

Figure 8: Eulerian Path.

Figure 9: Eulerian Path.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 675
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

stead two elements which do not react have a negative
ratio or 0.

• The elements with initial components and that belong
to the adjacency lists, once reacted do not react again.

If it is known that E is the set of elements and C is the set of
components, we can see that the reaction is the following op-
eration:

∀x∈C | ∃yax, xbz∈E so that yaxxbz ≡yaxbz with y, a, x, b∈C
and yaxbz∈E

In this case, we have a set of elements belonging to the adja-
cencies lists, which we will denote as Element-[i], therefore,
the set would initially remain in the following form.

 Element-1: {(s, x1, u)}
 Element-2: {(s, x2, v)}
 Element-3: {(u, x3, w)}
 Element-4: {(u, x7, v)}
 Element-5: {(w, x4, v)}
 Element-6: {(w, x6, t)}
 Element-7: {(v, x5, t)}

With this initial set, its elements can be analysed and it can be
seen how these premises associated to the set can be fulfilled
and new elements be created. In this case, it can be seen that
Element-1 would react with Element-3 and Element-4, form-
ing Element-8 and Element-9, respectively. It can also be seen
that Element-2 reacts with Element-7 to form Element-10,
which is now solution. After this, the set would remain as fol-
lows.

 Element-1: {(s, x1, u)} [does not react] premise 4
 Element-2: {(s, x2, v)} [does not react] premise 4
 Element-3: {(u, x3, w)}
 Element-4: {(u, x7, v)}
 Element-5: {(w, x4, v)}
 Element-6: {(w, x6, t)}
 Element-7: {(v, x5, t)}
 Element-8: {(s, x1, u, x3, w)}
 Element-9: {(s, x1, u, x7, v)}
 Element-10: {(s, x2, v, x5, t)}

In a following round, it is observed that Element-8 can react
with Element-5 forming Element-11 and, that also Element-8
can react with Element-6 to form Element-12, finally, Element-
9 reacts with Element-7 forming Element-13. In this round the
set would be as follows.

 Element-1: {(s, x1, u)} [does not react] premise 4
 Element-2: {(s, x2, v)} [does not react] premise 4
 Element-3: {(u, x3, w)}
 Element-4: {(u, x7, v)}
 Element-5: {(w, x4, v)}
 Element-6: {(w, x6, t)}
 Element-7: {(v, x5, t)}
 Element-8: {(s, x1, u, x3, w)}
 Element-9: {(s, x1, u, x7, v)}
 Element-10: {(s, x2, v, x5, t)}

 Element-11: {(s, x1, u, x3, w, x4, v)}
 Element-12: {(s, x1, u, x3, w, x6, t)}
 Element-13: {(s, x1, u, x7, v, x5, t)}

Observing the set, it is seen that there is a single reaction, that
of Element-11, which reacts with Element-7 to form Element-
14. With this last reason, the set would be as follows.

 Element-1: {(s, x1, u)} [does not react] premise 4
 Element-2: {(s, x2, v)} [does not react] premise 4
 Element-3: {(u, x3, w)}
 Element-4: {(u, x7, v)}
 Element-5: {(w, x4, v)}
 Element-6: {(w, x6, t)}
 Element-7: {(v, x5, t)}
 Element-8: {(s, x1, u, x3, w)}
 Element-9: {(s, x1, u, x7, v)}
 Element-10: {(s, x2, v, x5, t)}
 Element-11: {(s, x1, u, x3, w, x4, v)}
 Element-12: {(s, x1, u, x3, w, x6, t)}
 Element-13: {(s, x1, u, x7, v, x5, t)}
 Element-14: {(s, x1, u, x3, w, x4, v, x5, t)}

It can be seen that the results are Element-10, Element-12, El-
ement-13 and finally Element-14, since they have initial and
final components. The operation of this previous approach, to
find the solutions or paths, is performed sequentially. But in
the circuit is performed in parallel form, i.e. the circuit has
considered two sets; the first set C1, is formed by the elements
which contain initial components and the elements that do not
contain final components. The second set C2 is formed by the
elements that contain final components and the elements
which do not contain initial components. Both sets are encod-
ed by Cod-Inchrosil and, stored in different strands Figure 10-
10, respectively. These strands link their components by a cir-
cuiting which contains comparers Figure 10-9, forming a ma-
trix as observed in Figure 10; in this way, they react in parallel
form, obtaining a set of reactions encoded as positive (1) or
negative (0). These reactions form a matrix of 0s and 1s. There-
fore, there are two sets C1 and C2, which represent the two
aforementioned sets and which are encoded in Inchrosil
strands. On the other hand, we have a Cr, which is formed by
the reactions between the elements of set C1 and C2; in this
way, the reaction is redefined as the operation, where e2∈C2
and e1∈C1, then e1e2∈Cr, with being the reaction and the val-
ues it may take are 0 or 1. As is observed, a new element is not
created in the reaction which must react, but all react at the
same time and it is indicated in a matrix, with a 1 if there had
been a reaction or the reaction is positive and, in contrast, with
a zero if there had not been a reaction or the reaction has been
negative.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 676
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Once the matrix has been obtained with the reactions of all
elements with all others, this information is passed to a buffer
and, by software or circuitry, path recovery algorithms are
applied to it, which do not have a very high cost and are of
polynomial order. If weighted graphs are considered, the
weights would be stored in a memory (Inchrosil memory or
another type of memory), therefore, the edges of the previous
graph contain the direction and not the value of the weight,
the motive why large quantities can be used for the weights
and the directions have a determined length. Once the edges
of the path have been found, it is only necessary to add the
costs of each edge, to obtain the total cost of the path. Then
with the total costs, the paths can be sorted according to sort-
ing criteria; all of this can be performed by circuitry or soft-
ware modules, which would be connected with the device.
This circuit resolves the problems posed in Dijkstra's, Floyd-
Warshall and Bellman-Ford's and Ford-Fulkenson's algo-
rithms, as they can consider negative costs, etc.

6 CONSULSION
In conclusion, the advantage of these systems is the easy in-
corporation in existing hardware systems, since both are based
on electronics and integrated circuits. On the other hand, it is a
hardware alternative for the existing calculation systems, since
with the software systems they need another environment
(operating system, virtual machines, etc.) to function and, in-
stead, this device would be connected directly to the circuitry
of the host device.

References

[1] Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern
Approach, Cambridge University Press, 2009.
[2] Hopcroft John E., Motwan Rajeev, Ullman Jeffrey D, Introduction to
Automata Theory, Languages, and Computation, Prentice Hall, 2007.

[3] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press,
1985.
[4] F. Harary, Graph Theory, Perseus Books, 1994.
[5] L. Euler, Solutio Problematis ad geometriam situs, 1736.
[6] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer-
ische Mathematik, p. 269–271, 1959.
[7] R. W. Floyd, Algorithm 97: Shortest Path, Communications of the ACM 5
(6), p. 345, 1962.
[8] S. Warshall, A theorem on Boolean matrices, Journal of the ACM, p. 11–12.
1962.
[9] John von Neumann, First Draft of a Report on the EDVAC, 1945.
[10] J. D. Markgraf, The Von Neumann bottleneck, 2007.
[11] Jordan Baumgardner, Karen Acker, Oyinade Adefuye and Samuel
Thomas Crowley, Solving a Hamiltonian Path Problem with a bacterial com-
puter, Journal of Biological Engineering, 2009.
[12] Leonard Max Adleman, Molecular computation of solutions to combinato-
rial problems, Science, p. 1021–1024, 1994.
[13] Liu W, Gao L, Liu X, Wang S and Xu J, Solving the 3-SAT problem based
on DNA computing, 2003.
[14] Gheorghe P˘aun, Introduction to Membrane Computing, 2009
[15] Mihai Oltean, Solving the Hamiltonian path problem with a light-based
computer, Natural Computing, 2008
[16] Gerald L. Thompson and Shared Singhal, A probabilistic polynomial
Algorithm for solving a directed Hamiltonian path problem, 1983
[17] Omar M. Sallabi and Younis El-Haddad, An Improved Genetic Algo-
rithm to Solve the Traveling Salesman Problem, World Academy of Science,
Engineering and Technology, pp. 403-406, 2009
[18] Frank Rubin, a Search Procedure for Hamilton Paths and Circuits, Journal
of the ACM, p. 576–80, 1974
[19] Richard Bellman, on a routing problem, Quarterly of Applied Mathe-
matics, p. 87–90, 1958
[20] L. R. Ford Jr., Network Flow Theory, 1956
[21] E. F. Moore, The shortest path through a maze, Proc. Internat. Sympos.
Switching Theory 1957, Part II. Cambridge, Mass.: Harvard Univ. Press, p.
285–292, 1959
[22] J. Y. Yen, An algorithm for finding shortest routes from all source nodes to a
given destination in general networks, Quarterly of Applied Mathematics, p.
526–530, 1970
[23] Silvia, Jose Daniel and Carlos Llopis, DNA based in silicon (Inchrosil),
International Journal of Scientific & Engineering Research, pp. 728-732,
2014.
[24] Silvia, Jose Daniel and Carlos Llopis, Electronic System for emulating the
chain of the DNA structure of a chromosome. Spain Patent WO 2009/022024
A1, 19 Febrary 2009.
[25] Foreman, Matthew and Akihiro Kanamori, Handbook of Set Theory,
2010.
[26] M. Morris Mano, Digital Logic and Computer Design, Prentice-Hall, 1979
[27] C. S. Wallace, A suggestion for a fast multiplier, IEEE Trans. on Electron-
ic Comp, 1964.

Figure 10: Circuit to solve short path

IJSER

http://www.ijser.org/

	1 Introduction
	6 Consulsion

